

Single module identification – multistep method

Paul Van den Hof

Doctoral School Lyon, France, 11-12 April 2024

www.sysdynet.eu www.pvandenhof.nl p.m.j.vandenhof@tue.nl

Local identification – 2 node example

Method	Transfer		# u-signals needed
Local Direct ^[2]	$w \to w$	Consistency & ML	0
Indirect ^[3]	$u \to w$	Consistency	1

Single module identifiability ^[1]

• Method independent

2

• Identifiability: no *u*-signal required

[1] Shi, et al. 2021, 2022, 2023[2] Ramaswamy, et al., TAC, 2021.

[3] Gevers, et al., IFAC, 2018. Hendrickx, et al., TAC, 2019. Bazanella, et al., CDC, 2019.

Local identification – confounding variables

*MIMO: Multivariate noise model to model confounding variables as correlated noise

Single module identifiability

- Method independent
- Identifiability: one *u*-signal required

How can we obtain relaxed conservatism compared to current direct methods in local identification?

- Requires fewer u-signals
- Keep advantages of the current direct methods

Local identification – confounding variables

Method	Transfer		# u-signals needed	
Local Direct	$w \rightarrow w$	Consistency & ML	2	U ₁
Indirect	$u \to w$	Consistency	1	
Multi-step Least squares ^[1]			1	Full net

 $u_1 \rightarrow w_1 \rightarrow G_{21} \rightarrow w_2 \rightarrow u_2$

Full network identification

Single module identifiability

- Method independent
- Identifiability: one *u*-signal

Multi-step method for full networks ^[1,2]

Full network identification w = Gw + He + u

1. High order ARX model to reconstruct the innovation Estimate $u \to w$ with high-order ARX and reconstruct \hat{e}

Rewrite network equation:

 $w = Gw + (H - I)\hat{e} + Ie + u \rightarrow \text{No confounding variables}$ with \hat{e} an additional measured input

2. Parametric network model estimate

$$w_j = \sum_k G_{jk} w_k + \sum_{\ell} (H_{j\ell} - I_{jj}) \hat{e}_{\ell} + e_j + u_j$$
 Direct method

estimate MISO models for each $j \in \mathcal{L}$, using Weighted Nullspace Fitting $^{[3]}
ightarrow$ convex

^[1] Fonken, et al., Automatica, 2022

^[2] Dankers, et al., technical note, 2019

^[3] Galrinho, et al., TAC, 2019.

- 1. Selection of nodes
- 2. High order ARX model to reconstruct the innovation signal
- 3. Parametric target module estimate

Data Informativity:

sufficient number of u-signals?

1. Selection of nodes

For a given target mdule G_{ji} , select a set of nodes w_S that satisfies the PPL condition

2. Decompose the nodes

Decompose S in disjunct sets: $S = Y \cup U$, with $j \in Y$, and Y contains all nodes in w_S that have a confounding variable with w_j Consequently:

$$\begin{bmatrix} w_{\mathcal{Y}} \\ w_{\mathcal{U}} \end{bmatrix} = \begin{bmatrix} \bar{G} \\ \bar{G}_{\mathcal{U}} \end{bmatrix} \begin{bmatrix} w_{\mathcal{Y}} \\ w_{\mathcal{U}} \end{bmatrix} + \begin{bmatrix} \bar{H} & 0 \\ 0 & \bar{H}_{\mathcal{U}} \end{bmatrix} \begin{bmatrix} \xi_{\mathcal{Y}} \\ \xi_{\mathcal{U}} \end{bmatrix} + \begin{bmatrix} u_{\mathcal{Y}} \\ u_{\mathcal{U}} \end{bmatrix}$$

 $u_{\mathcal{Y}}$ and $u_{\mathcal{U}}$ now refer to external excitation signals in the *immersed* network.

$$\begin{bmatrix} w_{\mathcal{Y}} \\ w_{\mathcal{U}} \end{bmatrix} = \begin{bmatrix} \bar{G} \\ \bar{G}_{\mathcal{U}} \end{bmatrix} \begin{bmatrix} w_{\mathcal{Y}} \\ w_{\mathcal{U}} \end{bmatrix} + \begin{bmatrix} \bar{H} & 0 \\ 0 & \bar{H}_{\mathcal{U}} \end{bmatrix} \begin{bmatrix} \xi_{\mathcal{Y}} \\ \xi_{\mathcal{U}} \end{bmatrix} + \begin{bmatrix} u_{\mathcal{Y}} \\ u_{\mathcal{U}} \end{bmatrix}$$

3. Apply the "full network" reasoning to the first part:

$$w_{\mathcal{Y}} = \bar{G} \begin{bmatrix} w_{\mathcal{Y}} \\ w_{\mathcal{U}} \end{bmatrix} + \bar{H}\xi_{\mathcal{Y}} + u_{\mathcal{Y}}$$

Estimate a high-order ARX model: $u \to w_{\mathcal{Y}}$ to reconstruct $\xi_{\mathcal{Y}}$

Estimate the *j*-th row of

$$w_{\mathcal{Y}} = \bar{G} \begin{bmatrix} w_{\mathcal{Y}} \\ w_{\mathcal{U}} \end{bmatrix} + (\bar{H} - I)\hat{\xi}_{\mathcal{Y}} + \xi_{\mathcal{Y}} + u_{\mathcal{Y}}$$

TU/e

Wi

The external signals $u_{\mathcal{Y}}$ can again be decomposed:

And for the row related to the target module output:

$$u_j = \sum_{m \in \mathcal{K}_j} \bar{J}_{jm}(q) u_m + u_{\mathcal{P}_j}$$

Parametric target module estimate

$$w_j = \sum_{k \in \mathcal{N}_j^-} \bar{G}_{jk} w_k + \sum_{\ell \in \mathcal{Y}} (\bar{H}_{j\ell} - I_{jj}) \hat{\xi}_\ell + \xi_j + \sum_{m \in \mathcal{K}_j} \bar{J}_{jm} u_m + u_{\mathcal{P}_j}$$
inneighbors in the immersed network u_j

External excitation signals that do **not** contribute to data-informativity: u_{κ_i}

Data-informativity

$$\Phi_{\kappa} \succ 0 \quad \kappa = \begin{bmatrix} w_{\mathcal{N}_{j}^{-}} \\ \xi_{\mathcal{Y}} \\ u_{\mathcal{K}_{j}} \end{bmatrix}$$

P

 $\kappa~$ is persistently exciting holds generically if there are $~dim(\kappa)~$ vertex disjoint paths from

$$\begin{bmatrix} \xi_{\mathcal{S}} \\ u_{\mathcal{L}} \end{bmatrix} \to \begin{bmatrix} w_{\mathcal{N}_{j}^{-}} \\ \xi_{\mathcal{Y}} \\ u_{\mathcal{K}_{j}} \end{bmatrix}$$

Data informativity

$$\Phi_{\kappa} \succ 0 \quad \kappa = \begin{bmatrix} w_{\mathcal{N}_{j}^{-}} \\ \xi_{\mathcal{Y}} \\ u_{\mathcal{K}_{j}} \end{bmatrix}$$

 $w_{\mathcal{N}_{j}^{-}}$ is persistently exciting holds generically if there are $dim(w_{\mathcal{N}_{j}^{-}})$ vertex disjoint paths from

$$\begin{bmatrix} \xi_{\mathcal{U}} \\ u_{\mathcal{L}\setminus\mathcal{K}_j} \end{bmatrix} \to w_{\mathcal{N}_j^-}$$

2-node example

$$\mathcal{Y} = \{1, 2\}, \ \mathcal{U} = \emptyset$$
$$u_{\mathcal{L} \setminus \mathcal{K}_j} = u_1, u_2 \quad \notin \mathcal{K}_j = \emptyset$$
$$\Phi_{\kappa} \succ 0$$
$$\begin{bmatrix} \xi \mathcal{U} \\ u_{\mathcal{L} \setminus \mathcal{K}_j} \end{bmatrix} \rightarrow w_{\mathcal{N}_j^-} \quad \begin{bmatrix} \emptyset \\ u_1, u_2 \end{bmatrix} \rightarrow w_1$$

 w_1 is persistently exciting holds generically if there is 1 vertex disjoint path from u_1 or $u_2 \rightarrow w_1$

Local identification

Single module identifiability

- Method independent
- Identifiability: 1 *u*-signal

Method	Transfer		# u-signals needed	
Local Direct	$w \to w$	Consistency & ML	2	MIMC
Indirect	$u \to w$	Consistency	1	
Multi-step Least squares	1. Indirect 2. Direct	Consistency & ML?	1	MISO

e

Conclusion

Combining indirect and direct methods:

- Requires fewer u-signals than current direct method
- Keeps advantages of the current direct methods
- Parametric estimation with Weighted Null Space Fitting \rightarrow Convex
- For more details, see [1]

Available in Toolbox

www.sysdynet.net

